Developing conductive and electrocatalytic mediators in Li-S batteries

2022-09-25 00:56:26 By : Ms. Alina Xie

Click here to sign in with or

by Chinese Academy of Sciences

Lithium sulfide (Li-S) batteries are considered a promising and efficient energy storage system because of their high energy density (2600 Wh kg-1) and low sulfur material cost. However, numerous obstacles to the practical implementation of Li–S batteries remain, including low sulfur conductivity, the shuttle effect, and the requirement for an adequate volume change (80%) of sulfur during charging and discharging operations. These have limited the applicability of Li–S batteries.

Transition metal chalcogenides (TMDs), such as molybdenum diselenide (MoSe2), have received attention as a viable method for accelerating sulfur redox processes. However, the limited number of active sites in MoSe2 considerably reduces their overall electrocatalytic performance.

Metal doping into MoSe2 can improve the electronic conductivity of MoSe2 and generate defects, creating numerous reactive sites for catalytic reactions. Moreover, polysulfide transformation in the Li–S system can be improved through defect engineering, which can alter the physicochemical and electronic structure to enhance the adsorption and catalytic properties of a material.

Recently, Yutao Dong and Jianmin Zhang (corresponding authors), Mohammed A. Al-Tahan (first author), and others published a manuscript titled "Modulating of MoSe2 functional plane via doping-defect engineering strategy for the development of conductive and electrocatalytic mediators in Li-S batteries" in the Journal of Energy Chemistry.

The authors demonstrate that introducing iron exposes more active selenium edge sites in MoSe2, which can selectively adsorb more lithium polysulfides (LiPSs) to minimize the shuttle effect. Moreover, the conductive feature of rGO improves the cell's electrical conductivity and promotes the adsorption of polysulfides via chemical bonding with the functional group of rGO. Therefore, using the Fe-MoSe2@rGO nanohybrid as a functional plane offers the advantages of high conductivity and effective LiPS adsorption. Explore further Organic porous structures on 2-D defect networks More information: Mohammed A. Al-Tahan et al, Modulating of MoSe2 functional plane via doping-defect engineering strategy for the development of conductive and electrocatalytic mediators in Li-S batteries, Journal of Energy Chemistry (2022). DOI: 10.1016/j.jechem.2022.09.001 Provided by Chinese Academy of Sciences Citation: Developing conductive and electrocatalytic mediators in Li-S batteries (2022, September 23) retrieved 24 September 2022 from https://phys.org/news/2022-09-electrocatalytic-li-s-batteries.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.